If it's not what You are looking for type in the equation solver your own equation and let us solve it.
4x^2-112x+343=0
a = 4; b = -112; c = +343;
Δ = b2-4ac
Δ = -1122-4·4·343
Δ = 7056
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{7056}=84$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-112)-84}{2*4}=\frac{28}{8} =3+1/2 $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-112)+84}{2*4}=\frac{196}{8} =24+1/2 $
| M2+6m=7 | | 10x–4(2x+6)=8 | | 2a-1/3=a+5 | | -2x+24=8 | | |3-6x1=5 | | 4800=16t^2 | | 3/4-c/6=5c/12+7/8 | | (3×c)+9=58 | | 4x+6x+7x+7x=360 | | 2x^2=x+70 | | 2.5(6.4−t)=V | | X=29+3x6 | | 9.2/3=11/x | | 5n^2+39n-8=0 | | 0.8+d+1.6+d+0.8=8.5 | | ((1/2)x+4)+((3/4)x-6)=2x-47 | | 0.15y+0.09(y+2000=)2100 | | 0.2x+152.2=180 | | x^2+x^2=22^2 | | 2(x-4=3(x-1 | | m^2-4=3 | | 0.2x+150.6=180 | | 8(x-5)=5x-13 | | x^2-10+15=3x+3 | | 5x+29=-2(x+3) | | 3(n-1)=n+11 | | 6-8x=-32 | | 9(x+1)=-5x-33 | | -6=-6x+3(x-7) | | X=8x+45 | | 4x+2(-1)=-17 | | 2(5z+4)=3(3z+3) |